Induced Gauge Fields in the Path Integral

نویسندگان

  • Shogo TANIMURA
  • Izumi TSUTSUI
چکیده

The path integral on a homogeneous space G/H is constructed, based on the guiding principle ‘first lift to G and then project to G/H ’. It is then shown that this principle admits inequivalent quantizations inducing a gauge field (the canonical connection) on the homogeneous space, and thereby reproduces the result obtained earlier by algebraic approaches. ∗E-mail: [email protected] †E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Wormholes and Topological Symmetry*

We investigate the wormhole solutions that arise in the semiclassical analysis of euclidean gravity coupled to gauge fields. In 2 + 1 dimensions, "magnetic monopole" solutions can be constructed, for either abelian or nonabelian gauge fields. The low-energy physics induced by these wormholes qualitatively resembles, but is quantitatively distinguishable from, the tow-energy physics of a gauge t...

متن کامل

Constant External Fields in Gauge Theory and the Spin 0 , 1 2 , 1 Path Integrals

We investigate the usefulness of the “string-inspired technique” for gauge theory calculations in a constant external field background. Our approach is based on Strassler’s worldline path integral approach to the Bern-Kosower formalism, and on the construction of worldline (super–) Green’s functions incorporating external fields as well as internal propagators. The worldline path integral repre...

متن کامل

Constant External Fields in Gauge Theory and the Spin 0

We investigate the usefulness of the “string-inspired technique” for gauge theory calculations in a constant external field background. Our approach is based on Strassler’s worldline path integral approach to the Bern-Kosower formalism, and on the construction of worldline (super–) Green’s functions incorporating external fields as well as internal propagators. The worldline path integral repre...

متن کامل

Equivalence of Hamiltonian and Lagrangian path integral quantization: Effective gauge theories.

The equivalence of correct Hamiltonian and naive Lagrangian (Faddeev–Popov) path integral quantization (Matthews’s theorem) is proven for gauge theories with arbitrary effective interaction terms. Effective gauge-boson self-interactions and effective interactions with scalar and fermion fields are considered. This result becomes extended to effective gauge theories with higher derivatives of th...

متن کامل

A Path Integral Representation of the Map between Commutative and Noncommutative Gauge Fields

The world-volume theory on a D-brane in a constant B-field background can be described by either commutative or noncommutative Yang-Mills theories. These two descriptions correspond to two different gauge fixing of the diffeomorphism on the brane. Comparing the boundary states in the two gauges, we derive a map between commutative and noncommutative gauge fields in a path integral form, when th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995